<source id="iwx18"><tr id="iwx18"></tr></source>

      1. <noscript id="iwx18"><tbody id="iwx18"><noframes id="iwx18"></noframes></tbody></noscript>
      2. <noscript id="iwx18"></noscript>
        <bdo id="iwx18"></bdo>
          
          

          <noscript id="iwx18"><tbody id="iwx18"></tbody></noscript>
                    1. www国产精品视频_亚洲精品天堂_久久久久亚洲精品_国产又大又硬又粗_来一水AV@lysav

                      Technical articles技術文章
                      首頁 > 技術文章 >【CEM Liberty】全自動微波增強蛋白質全合成

                      【CEM Liberty】全自動微波增強蛋白質全合成

                       更新時間:2024-02-22 點擊量:1116

                      摘 要


                      使用微波增強的固相多肽合成(SPPS)技術和Liberty Blue™ 2.0以及Liberty PRIME™ 2.0可以快速高效地合成蛋白質和長肽。優(yōu)化后的微波SPPS結合了一種新的頂部沖洗技術,可以實現(xiàn)更高純度的蛋白質序列合成。這項技術已經通過一系列生物相關蛋白質(如泛素、巴氏蛋白、胰島素原、膠原、HIV蛋白酶和MDM2)的合成得到驗證,這些蛋白質含有76-127個氨基酸,通過逐步組裝獲得良好純度,無需任何連接步驟。通過在Prodigy™制備型HPLC肽純化系統(tǒng)上以60°C的高溫色譜法從粗制品中分離出高純度樣品。



                      引 言


                      蛋白質和長肽在生物體系中扮演著至關重要的角色,并且它們是許多重要治療藥物的構成要素。然而,這些生物分子的研究進展常常受到基于時間密集型表達技術和原生化學連接方法的限制。固相多肽合成(SPPS)為直接合成具有特定序列的蛋白質提供了一種途徑,并能夠迅速產生結構類似物。盡管如此,由于在合成過程中雜質的累積和產物聚集的傾向,長肽和蛋白質的SPPS合成面臨著不小的挑戰(zhàn)。在早期,SPPS主要被應用于生產較短的片段,以便進行原生化學連接,而對于較長序列的合成能力相對受限[1]。近來,快速流動式合成方法展示了其以極短周期時間組裝長序列的顯著潛力。但這種方法的一個缺點是,它需要使用大量的氨基酸(通常是≥ 100當量),并且伴隨著大量廢物的產生。


                      微波加熱技術現(xiàn)在已經被普遍應用于多肽合成,并且已經證實其能夠有效地克服肽鏈聚集的難題,并促進困難反應的順利進行[3,4]。通過結合優(yōu)化的碳二亞胺耦合條件和微波加熱(CarboMAX™ 技術),可以實現(xiàn)最小程度的差向異構化,并且與傳統(tǒng)使用鏻鹽和強堿的更為激烈激活方法相比,能夠實現(xiàn)更高純度的合成效果。此外,采用無需中間排放步驟的一鍋法耦合和脫保護流程,使得整個過程更加迅速和高效。


                      在2022年,推出了新一代的微波肽合成器系列——Liberty PRIME 2.0和Liberty Blue 2.0。這些先進設備采用了創(chuàng)新的頂部沖洗技術,該技術在肽合成過程中能夠保持反應容器表面的清潔度。通過預防揮發(fā)性試劑的再冷凝,頂部沖洗技術有效避免了對后續(xù)反應的污染。隨著長蛋白質合成的進行,每個反應步驟中即使是微小的純度提升也會累積起來,最終轉化為整體純度的顯著提高。利用Liberty PRIME 2.0,成功合成了一系列具有挑戰(zhàn)性的蛋白質,包括76個氨基酸的泛素、86個氨基酸的胰島素原、89個氨基酸的巴氏蛋白、99個氨基酸的類膠原蛋白序列和HIV蛋白酶,以及127個氨基酸的MDM2。


                      Liberty Blue 2.0.png


                      圖1. Liberty PRIME 2.0


                      蛋白質合成流程經過精心優(yōu)化,僅需要10到20當量的氨基酸,平均每個合成周期只需大約7.5分鐘,這樣的高效率使得目標蛋白可以在一晚上的時間內(每輪運行10至17小時)以較高的初始純度完成合成。到了第二天,所合成的蛋白質便被分離并轉移到Prodigy純化系統(tǒng),在那里它們通過60°C的升溫色譜法得到進一步凈化。這一?程不僅速度迅捷,而且試劑的使用也木及具效率(詳見表1)。



                      材料與方法


                      試 劑


                      從CEM Corporation(Matthews, NC)獲得的以下Fmoc氨基酸包含所示的側鏈保護基團:Ala, Asn(Trt), Arg(Pbf), Asp(OMpe), Asp(OtBu)-(Dmb)Gly, Cys(Trt), Gln(Trt), Glu(OtBu), Gly, His(Boc), Ile, Leu, Lys(Boc), Phe, Pro, Met, Ser(tBu), Thr(tBu), Trp(Boc), Tyr(tBu), 和 Val。Rink Amide ProTide™ LL樹脂(0.20 meq/g替代)也來自CEM Corporation。N,N’-二異丙基碳二亞胺(DIC)、吡咯烷、三氟乙酉夋(TFA)、3,6-二氧雜-1,8-辛二硫醇(DODT)和三異丙基硅烷(TIS)來自Sigma-Aldrich(St. Louis, MO)。二氯甲烷(DCM)、N,N-二甲基甲酰胺(DMF)、無水乙酉迷(Et2O)和乙酸來自VWR(West Chester, PA)。LC-MS級水(H2O)和LC-MS級乙腈(MeCN)來自Fisher Scientific(Waltham, MA)。



                      蛋白質合成


                      蛋白質合成在CEM Liberty PRIME 2.0自動化微波肽合成儀上進行,采用Rink Amide ProTide® LL樹脂,合成規(guī)模為0.05或0.1毫摩爾。脫保護步驟使用DMF中的吡咯烷進行處理。偶聯(lián)反應則通過使用10或20當量的Fmoc保護氨基酸與DIC和Oxyma Pure在DMF中反應(遵循改良的CarboMAX方案)。蛋白質的切割在室溫或38°C下進行,使用的是TFA/H2O/TIS/DODT混合物。切割完成后,蛋白質通過乙酉迷沉淀并經過夜凍干處理以獲得最終產品。


                      蛋白質純化


                      蛋白質通過裝備有Intrepid C18, 21.2 mm x 250 mm, 5 μm色譜柱的Prodigy系統(tǒng)上的高溫HPLC進行純化。粗蛋白首先溶解在水中并過濾后注射進樣。分離在40或60°C下進行,使用含有0.1% TFA的(i)水和(ii)乙腈的梯度洗脫。


                      蛋白質分析


                      蛋白質在裝備有Q Exactive plus MS的ThermoFisher UPLC系統(tǒng)上進行分析,使用Acquity UPLC BEH C8色譜柱(1.7 mm x 100 mm)。峰分析在Chromeleon軟件上完成。分離使用含有0.05% TFA的(i)水和(ii)乙腈的梯度洗脫進行。


                      成 果



                      表1. 每種蛋白質的合成時間和產生的廢液總量

                      表1.png


                      表2. 每個蛋白質的氨基酸序列

                      加粗的DG表示使用了Asp(OtBu)-(DMB)Gly

                      638442136253700379577.png


                      結 論


                      微波固相肽合成(Microwave SPPS)技術已證明是一種用于合成大型肽鏈和蛋白質的強大且高效的方法。在Liberty PRIME 2.0設備上進行的實驗展示了其能力,成功合成了六種不同長度(從76至127個氨基酸)的蛋白質。這一自動化過程僅需10至17小時即可完成單個蛋白質的合成,并且目標蛋白質能夠通過Prodigy系統(tǒng)的高溫制備型HPLC迅速純化出來。與天然化學連接或蛋白質表達的傳統(tǒng)方法相比,這種快速且方便的替代方案提供了顯著的效率優(yōu)勢。此外,Liberty PRIME 2.0和Liberty Blue 2.0系統(tǒng)具有高度適應性,可用于引入非天然氨基酸或制備特殊蛋白質。整個組裝過程不僅速度快、效率高,而且產生的廢物極少,顯示出其*的環(huán)保性能。


                      圖片1_左1.png

                      圖片1_右1.png

                      圖片1_左2.png

                      圖片1_右2.png





















                      圖1.泛素樣品粗制(1、2)和純化后(3、4)的UPLC-MS 分析

                      圖片2_左1.png

                      圖片3_右1.png

                      圖片2_左2.png

                      圖片2_右2.png





















                      圖2.原胰島素粗樣品粗制(1、2)和純化后(3、4)的 UPLC-MS 分析

                      圖片3_左1.png

                      圖片3_右1.png

                      圖片3_左2.png

                      圖片3_右2.png





















                      圖3.芽孢桿菌RNA酶樣品粗制(1、2)和純化后(3、4)的 UPLC-MS 分析

                      圖片4_左1.png

                      圖片4_右1.png

                      圖片4_左2.png

                      圖片4_右2.png





















                      圖4.艾滋病毒蛋白酶樣品粗制(1、2)和純化后(3、4)的 UPLC-MS 分析




                      圖片5_左1.png

                      圖片5_右1.png

                      圖片5_左2.png

                      圖片5_右2.png


























                      圖5.膠原蛋白樣品粗制(1、2)和純化后(3、4)的 UPLC-MS 分析

                      圖片6_左1.png

                      圖片6_右1.png

                      圖片6_左2.png

                      圖片6_右2.png





















                      圖6.MDM2樣品粗制(1、2)和純化后(3、4)的 UPLC-MS 分析


                      參考文獻


                      [1] Hou, W.; Zhang, X.; Liu, C.-F., Progress in Chemical Synthesis of Peptides and Proteins. Transactions of Tianjin University 2017, 23 (5), 401-419.

                      [2] Hartrampf, N.; Saebi, A.; Poskus, M.; Gates, Z. P.; Callahan, A. J.; Cowfer, A. E.; Hanna, S.; Antilla, S.; Schissel, C. K.; Quartararo, A. J.; Ye, X.; Mijalis, A. J.; Simon, M. D.; Loas, A.; Liu, S.; Jessen, C.; Nielsen, T. E.; Pentelute, B. L., Synthesis of proteins by automated flow chemistry. Science 2020, 368(6494), 980-987.

                      [3] Bacsa, B.; Horváti, K.; B?sze, S.; Andreae, F.; Kappe, C.O., Solid-Phase Synthesis of Difficult Peptide Sequences at Elevated Temperatures: A Critical Comparison of Microwave and Conventional Heating Technologies. J. Org. Chem. 2008, 73 (19), 7532-7542.

                      [4] Friligou, I.; Papadimitriou, E.; Gatos, D.; Matsoukas, J.;Tselios, T., Microwave-assisted solid-phase peptide synthesis of the 60–110 domain of human pleiotrophin on 2-chlorotrityl resin. J. Amino Acids 2011, 40 (5), 1431-1440.

                      [5] CEM: CarboMAX - Enhanced Peptide Coupling at Elevated Temperatures. CEM Corporation Website, Application Notes.[Online]. Published Online: January 9, 2018.


                      www国产精品视频_亚洲精品天堂_久久久久亚洲精品_国产又大又硬又粗_来一水AV@lysav
                      <source id="iwx18"><tr id="iwx18"></tr></source>

                        1. <noscript id="iwx18"><tbody id="iwx18"><noframes id="iwx18"></noframes></tbody></noscript>
                        2. <noscript id="iwx18"></noscript>
                          <bdo id="iwx18"></bdo>
                            
                            

                            <noscript id="iwx18"><tbody id="iwx18"></tbody></noscript>
                                      1. 金塔县| 基隆市| 富源县| 迁安市| 册亨县| 改则县| 黔西县| 湛江市| 富阳市| 乌审旗| 鸡泽县| 大宁县| 息烽县| 大宁县| 盐城市| 崇阳县| 宁津县| 突泉县| 竹北市| 澄城县| 乾安县| 南安市| 临沂市| 肇源县| 江山市| 杭锦后旗| 南郑县| 新建县| 都安| 都兰县| 江川县| 澜沧| 黑龙江省| 岳阳县| 和政县| 卓尼县| 渭南市| 盱眙县| 邵武市| 喜德县| 重庆市|